

Welcome to scrapyrt’s documentation!

HTTP server which provides API for scheduling Scrapy spiders and
making requests with spiders.

	Installation

	Scrapyrt HTTP API
	GET

	POST

	Response

	Tweaking spiders for realtime

	Command line arguments

	Configuration
	Available settings

	Spider settings

	Logging

	Releases
	ScrapyRT 0.12 (2021-03-08)

Installation

To install Scrapyrt:

pip install scrapyrt

Now you can run Scrapyrt from within Scrapy project by just typing:

scrapyrt

in Scrapy project directory. This should start server on port 9080.
You may change the port server will listen to using -p option
(see Command line arguments):

scrapyrt -p 9081

Scrapyrt will look for scrapy.cfg file to determine your project settings,
and will raise error if it won’t find one. Note that you need to have all
your project requirements installed.

Pay attention to Scrapy version you’re using in your spiders.
Scrapyrt makes use of recent improvements in Scrapy Crawler [http://doc.scrapy.org/en/latest/topics/api.html#scrapy.crawler.Crawler] interface that
are not present in old Scrapy versions. Look closely at requirements.txt of
Scrapyrt and install most recent development Scrapy version if possible.
Unfortunately we are unable to support old Scrapy versions.

If you would like to play with source code and possibly contribute
to the project, you can install Scrapyrt in ‘dev’ mode:

python setup.py develop

with this mode of installation changes you made to Scrapyrt source will be
reflected when you run scrapyrt command.

In production you can run Scrapyrt from docker image provided by Scrapinghub. You only
need to do following things:

docker pull scrapinghub/scrapyrt

This will download Scrapyrt Docker image for you. Next step you need to run this image. Remember
about providing proper port and project directory. Project directory from host machine must be mounted in
directory /scrapyrt/project on guest. Following command will launch Scrapyrt forwarding port 9080 from
guest to host, in demonized mode, with project directory in directory /home/user/quotesbot:

docker run -p 9080:9080 -tid -v /home/user/quotesbot:/scrapyrt/project scrapinghub/scrapyrt

If you’d like to test if your virtual container is running just run:

docker ps

this command should return container_id, image etc. Testing with curl:

curl -v "http://localhost:9080/crawl.json?url=http://example.com&spider_name=toscrape-css" | jq

should return expected response.

Scrapyrt HTTP API

Scrapyrt supports endpoint /crawl.json that can be requested
with two methods.

GET

Arguments

Currently it accepts following arguments:

	spider_name

	
	type: string

	required

Name of the spider to be scheduled. If spider is not found api
will return 404.

	url

	
	type: string

	required if start_requests not enabled

Absolute URL to send request to. URL should be urlencoded so that
querystring from url will not interfere with api parameters.

By default API will crawl this url and won’t execute any other requests.
Most importantly it will not execute start_requests and spider will
not visit urls defined in start_urls spider attribute. There will be
only one single request scheduled in API - request for resource identified
by url argument.

If you want to execute request pass start_requests argument.

	callback

	
	type: string

	optional

Must exist as method of scheduled spider, does not need to contain string “self”.
If not passed or not found on spider default callback parse [http://doc.scrapy.org/en/latest/topics/spiders.html#scrapy.spider.Spider.parse] will be used.

	errback

	
	type: string

	optional

Scrapy errback for request made from spider. It must exist as method of
scheduled spider, otherwise exception will be raised. String does not need to contain ‘self’.

	max_requests

	
	type: integer

	optional

Maximum amount of requests spider can generate. E.g. if it is set to 1
spider will only schedule one single request, other requests generated
by spider (for example in callback, following links in first response)
will be ignored. If your spider generates many requests in callback
and you don’t want to wait forever for it to finish
you should probably pass it.

	start_requests

	
	type: boolean

	optional

Whether spider should execute Scrapy.Spider.start_requests method.
start_requests are executed by default when you run Scrapy Spider
normally without ScrapyRT, but this method is NOT executed in API by
default. By default we assume that spider is expected to crawl ONLY url
provided in parameters without making any requests to start_urls
defined in Spider class. start_requests argument overrides this
behavior. If this argument is present API will execute start_requests
Spider method.

	crawl_args

	
	type: urlencoded JSON string

	optional

Optional arguments for spider. This is same as you use when running
spider from command line with -a argument, for example if you run
spider like this: “scrapy crawl spider -a zipcode=14100” you can
send crawl_args={“zipcode”:”14100”} (urlencoded: crawl_args=%7B%22zipcode%22%3A%2014100%7D)
and spider will get zipcode argument.

If required parameters are missing api will return 400 Bad Request
with hopefully helpful error message.

Examples

To run sample toscrape-css spider [https://github.com/scrapy/quotesbot/blob/master/quotesbot/spiders/toscrape-css.py] from Scrapy educational quotesbot project [https://github.com/scrapy/quotesbot]
parsing page about famous quotes:

curl "http://localhost:9080/crawl.json?spider_name=toscrape-css&url=http://quotes.toscrape.com/"

To run same spider only allowing one request and parsing url
with callback parse_foo:

curl "http://localhost:9080/crawl.json?spider_name=toscrape-css&url=http://quotes.toscrape.com/&callback=parse_foo&max_requests=1"

POST

Request body must contain valid JSON with information about request to be
scheduled with spider and spider name. All positional and keyword arguments
for Scrapy Request [http://doc.scrapy.org/en/latest/topics/request-response.html#scrapy.http.Request] should be placed in request JSON key. Sample JSON:

{
 "request": {
 "url": "http://www.target.com/p/-/A-13631176",
 "callback": "parse_product",
 "dont_filter": "True"
 },
 "spider_name": "target.com_products"
}

Slighty more complicated JSON:

{
 "request": {
 "url": "http://www.target.com/p/-/A-13631176",
 "meta": {
 "category": "some category",
 "item": {
 "discovery_item_id": "999"
 }
 },
 "callback": "parse_product",
 "dont_filter": "True",
 "cookies": {
 "foo": "bar"
 }
 },
 "spider_name": "target.com_products"
}

Arguments

JSON in POST body must have following keys:

	spider_name

	
	type: string

	required

Name of the spider to be scheduled. If spider is not found api
will return 404.

	max_requests

	
	type: integer

	optional

Maximal amount of requests spider can generate.

	request

	
	type: JSON object

	required

Should be valid JSON containing arguments to Scrapy request object
that will be created and scheduled with spider.

request JSON object must contain following keys:

	url

	
	type: string

	required

It can contain all keyword arguments supported by Scrapy Request [http://doc.scrapy.org/en/latest/topics/request-response.html#scrapy.http.Request] class.

If required parameters are missing api will return 400 Bad Request with
hopefully helpful error message.

Examples

To schedule spider toscrape-css with sample url using POST handler:

curl localhost:9080/crawl.json \
 -d '{"request":{"url":"http://quotes.toscrape.com/"}, "spider_name": "toscrape-css"}'

to schedule same spider with some meta that will be passed to spider request:

curl localhost:9080/crawl.json \
 -d '{"request":{"url":"http://quotes.toscrape.com/", "meta": {"alfa":"omega"}}, "spider_name": "toscrape-css"}'

Response

/crawl.json returns JSON object. Depending on whether request
was successful or not fields in json object can vary.

Success response

JSON response for success has following keys:

	status

	Success response always have status “ok”.

	spider_name

	Spider name from request.

	stats

	Scrapy stats [http://doc.scrapy.org/en/latest/topics/stats.html] from finished job.

	items

	List of scraped items.

	items_dropped

	List of dropped items.

	errors (optional)

	Contains list of strings with crawl errors tracebacks. Available only if
DEBUG settings is set to True.

Example:

$ curl "http://localhost:9080/crawl.json?spider_name=toscrape-css&url=http://quotes.toscrape.com/"
{
 "status": "ok"
 "spider_name": "toscrape-css",
 "stats": {
 "start_time": "2019-12-06 13:01:31",
 "finish_time": "2019-12-06 13:01:35",
 "finish_reason": "finished",
 "downloader/response_status_count/200": 10,
 "downloader/response_count": 11,
 "downloader/response_bytes": 24812,
 "downloader/request_method_count/GET": 11,
 "downloader/request_count": 11,
 "downloader/request_bytes": 2870,
 "item_scraped_count": 100,
 "log_count/DEBUG": 111,
 "log_count/INFO": 9,
 "response_received_count": 11,
 "scheduler/dequeued": 10,
 "scheduler/dequeued/memory": 10,
 "scheduler/enqueued": 10,
 "scheduler/enqueued/memory": 10,
 },
 "items": [
 {
 "text": ...,
 "author": ...,
 "tags": ...
 },
 ...
],
 "items_dropped": [],
}

Error response

JSON error response has following keys:

	status

	Error response always have status “error”.

	code

	Duplicates HTTP response code.

	message

	Error message with some explanation why request failed.

Example:

$ curl "http://localhost:9080/crawl.json?spider_name=foo&url=http://quotes.toscrape.com/"
{
 "status": "error"
 "code": 404,
 "message": "Spider not found: foo",
}

Tweaking spiders for realtime

If you have some standard values you would like to add to all requests
generated from realtime api and you don’t want to pass them in each
GET request sent to api you can add a method modify_realtime_request
to your spider, this method should accept request and return modified
request you would like to send. API will execute this method, modify request
and issue modified request.

For example:

class SpiderName(Spider):
 name = "some_spider"

 def parse(self, response):
 pass

 def modify_realtime_request(self, request):
 request.meta["dont_redirect"] = True
 return request

One more example (don’t forget to import random):

class SpiderName(Spider):
 name = "some_other_spider"

 def parse(self, response):
 pass

 def modify_realtime_request(self, request):
 UA = [
 'Mozilla/5.0 (Windows NT 5.1; rv:31.0) Gecko/20100101 Firefox/31.0',
 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/37.0.2062.94 Safari/537.36',
]
 request.headers["User-Agent"] = random.choice(UA)
 return request

Command line arguments

Use scrapyrt -h to get help on command line options:

$ scrapyrt -h
usage: scrapyrt [-h] [-p PORT] [-i IP] [--project PROJECT] [-s name=value]
 [-S project.settings]

HTTP API server for Scrapy project.

optional arguments:
 -h, --help show this help message and exit
 -p PORT, --port PORT port number to listen on
 -i IP, --ip IP IP address the server will listen on
 --project PROJECT project name from scrapy.cfg
 -s name=value, --set name=value
 set/override setting (may be repeated)
 -S project.settings, --settings project.settings
 custom project settings module path

Configuration

You can pass custom settings to Scrapyrt using -S option
(see Command line arguments):

scrapyrt -S config

Scrapyrt imports passed module, so it should be in one of the directories on
sys.path.

Another way to configure server is to use -s key=value option:

scrapyrt -s TIMEOUT_LIMIT=120

Settings passed using -s option have the highest priority, settings passed
in -S configuration module have priority higher than default settings.

Available settings

SERVICE_ROOT

Root server resource which is used to initialize Scrapyrt application.
You can pass custom resource here and start Scrapyrt with it.

Default: scrapyrt.resources.RealtimeApi.

CRAWL_MANAGER

Crawl manager that is used to create and control crawl.
You can override default crawl manager and pass path to custom class here.

Default: scrapyrt.core.CrawlManager.

RESOURCES

Dictionary where keys are resource URLs and values are resource classes.
Used to setup Scrapyrt application with proper resources. If you want to add
some additional resources - this is the place to add them.

Default:

RESOURCES = {
 'crawl.json': 'scrapyrt.resources.CrawlResource',
}

LOG_DIR

Path to directory to store crawl logs from running spiders.

Default: log directory.

TIMEOUT_LIMIT

Use this setting to limit crawl time.

Default: 1000.

DEBUG

Run Scrapyrt in debug mode - in case of errors you will get Python tracebacks
in response, for example:

{
 "status": "ok"
 "spider_name": "toscrape-css",
 "stats": {
 "start_time": "2019-12-06 13:11:30"
 "spider_exceptions/Exception": 1,
 "finish_time": "2019-12-06 13:11:31",
 "finish_reason": "finished",
 "downloader/response_status_count/200": 1,
 "downloader/response_count": 2,
 "downloader/response_bytes": 2701,
 "downloader/request_method_count/GET": 2,
 "downloader/request_count": 2,
 "downloader/request_bytes": 446,
 "log_count/DEBUG": 2,
 "log_count/ERROR": 1,
 "log_count/INFO": 9,
 "response_received_count": 2,
 "scheduler/dequeued": 1,
 "scheduler/dequeued/memory": 1,
 "scheduler/enqueued": 1,
 "scheduler/enqueued/memory": 1
 },
 "items": [],
 "items_dropped": [],
 "errors": [
 "Traceback (most recent call last): [...] \nexceptions.Exception: \n"
],
}

Default: True.

PROJECT_SETTINGS

Automatically picked up from scrapy.cfg during initialization.

LOG_FILE

Path to file to store logs from Scrapyrt with daily rotation.

Default: None. Writing log to file is disabled by default.

LOG_ENCODING

Encoding that’s used to encode log messages.

Default: utf-8.

Spider settings

Scrapyrt overrides some Scrapy project settings by default and most importantly
it disables some Scrapy extensions [http://doc.scrapy.org/en/latest/topics/extensions.html]:

"EXTENSIONS": {
 'scrapy.contrib.logstats.LogStats': None,
 'scrapy.webservice.WebService': None,
 'scrapy.telnet.TelnetConsole': None,
 'scrapy.contrib.throttle.AutoThrottle': None
}

There’s usually no need and thus no simple way to change those settings,
but if you have reason to do so you need to override get_project_settings
method of scrapyrt.core.CrawlManager.

Logging

ScrapyRT supports Scrapy logging with some limitations.

For each crawl it creates handler that’s attached to the root logger and
collects log records for which it can determine what spider object
current log is related to. The only way to pass object to the log record is
extra argument (see explanation and another usage example here [https://docs.python.org/2/library/logging.html#logging.debug]):

logger.debug('Log message', extra={'spider': spider})

Spider object is passed by default in Spider.logger [http://doc.scrapy.org/en/1.0/topics/spiders.html#scrapy.spiders.Spider.logger] and Spider.log [http://doc.scrapy.org/en/1.0/topics/spiders.html#scrapy.spiders.Spider.log]
backwards compatibility wrapper so you don’t have to pass it yourself
if you’re using them. All logs record that don’t have reference to spider object
or reference another spider object in the same process will be ignored.

Spider logging setup in ScrapyRT happens only after spider object instantiation,
so logging from Spider.__init__ method as well as logging during
middleware, pipeline or extension instantiation is not supported due to limitations
of initialization order in Scrapy.

Also ScrapyRT doesn’t support LOG_STDOUT [http://doc.scrapy.org/en/latest/topics/settings.html#log-stdout] - if you’re using print statements in
a spider they will never be logged to any log file. Reason behind this is
that there’s no way to filter such log records and they will appear in all log files
for crawls that are running simultaneously. This is considered harmful and is not supported.
But if you still want to save all stdout to some file - you can create custom
SERVICE_ROOT where you can setup logging stdout to file using
approach described in Python Logging HOWTO [https://docs.python.org/2/howto/logging.html] or redirect stdout to a file using
bash redirection syntax [http://www.gnu.org/software/bash/manual/html_node/Redirections.html], supervisord logging [http://supervisord.org/logging.html#child-process-logs] etc.

Releases

ScrapyRT 0.12 (2021-03-08)

	added crawl arguments for API

	removed Python 2 support

	added Python 3.9 support

	docs clean up

	removed superfluous requirements (demjson, six)

	fixed API crash when spider returns bytes in items output

	updated unit tests

	development improvements, moved from Travis to Github Workflows

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to scrapyrt’s documentation!

 		
 Installation

 		
 Scrapyrt HTTP API

 		
 GET

 		
 Arguments

 		
 Examples

 		
 POST

 		
 Arguments

 		
 Examples

 		
 Response

 		
 Success response

 		
 Error response

 		
 Tweaking spiders for realtime

 		
 Command line arguments

 		
 Configuration

 		
 Available settings

 		
 SERVICE_ROOT

 		
 CRAWL_MANAGER

 		
 RESOURCES

 		
 LOG_DIR

 		
 TIMEOUT_LIMIT

 		
 DEBUG

 		
 PROJECT_SETTINGS

 		
 LOG_FILE

 		
 LOG_ENCODING

 		
 Spider settings

 		
 Logging

 		
 Releases

 		
 ScrapyRT 0.12 (2021-03-08)

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

